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Abstract - The Beams subjected to the axial force and lateral 
force simultaneously are known as beam-columns. Bridge pier 
is idealized as a column subjected to axial load and biaxial 
moment. Slender member subjected to axial force and biaxial 
bending moment fails due to buckling effect. This buckling is 
caused	due	to	slenderness	effect	also	known	as	‘P∆’	effect.	The	
objective of the research reported in this paper is to obtain a 
theoretical formulation, using beam column theory for studying 
the behavior of straight hollow circular section and tapered 
hollow circular section of the bridge pier. Study is carried for 
different heights of bridge pier for straight hollow circular pier 
and tapered hollow circular pier. Study is carried by considering 
two lane box type bridge girder. Providing a straight hollow 
circular	 section	 for	 a	 direct	 &	 flexural	 action	 proves	 to	 be	
uneconomical. The straight hollow circular section of bridge 
pier is replaced by a tapered hollow circular pier section in the 
present study.

Keywords: Beam-column	 theory,	 Second	 order	 analysis,	 P∆	
effect, Bridge pier, Slenderness effect, Tapered hollow Circular 
bridge pier

I. IntroductIon

  Bridge Piers are subjected to forces in longitudinal 
direction as well as in transverse direction. This force causes 
biaxial moment at base of the pier. The pier is idealized as a 
column subjected to axial force and biaxial moment. These 
moments and axial force cause the pier to buckle along its 
longitudinal direction. This buckling is nothing but deflection 
of the pier. If the base moment due to these deflections is not 
considered then, it is known as first order analysis. By the first 
order analysis the structural capacity of the pier is estimated 
approximately. In order to get more accurate results, second 
order analysis of bridge pier is to be done, where the buckling 
effect is considered. Beam column theory is used for second 
order analysis.

 Bridge pier is subjected to an axial load and biaxial 
moments. Iterative neutral axis method is used to analyze the 
pier. Section is subjected to axial force combined with two 
orthogonal moments. The working load analysis is to assume 
as ‘mono axial bending with axial force’ and on this mono 
axially cracked section the effect of other orthogonal moment 
is superimposed.

II. Second order analySIS uSIng beam-column theory

Beams subjected to the axial compression and 
simultaneously supporting lateral loads are known as beam-
columns. The basic equation for the analysis of beam-column 
is derived by considering the beam in Fig 1. The beam is 
subjected to an axial compressive force P and to a distributed 
lateral load of intensity q which varies with the distance ‘x’ 
along the beam. Consider an element of length ‘dx’ between 
the two cross sections taken normal to the original axis of 
the beam as shown in the Fig 2. The lateral load may be 
considered as having constant intensity q over the distance 
‘dx’ and will be assumed positive when in the direction of 
the positive y axis which is downward in this case. The 
shearing force V and bending moment M acting on the sides 
of the elements are assumed  positive in the directions down. 
The relations among load, shearing force B, and bending 
moments are obtained from the equilibrium of the element in 
Fig 2 Summing forces in the y direction give:

( ) 0V qdx V dv− + + + =

Or       
dVq
dx

= − (2.1)

 By assuming that the angle between the axis of the beam 
and the horizontal is small we obtain,
                               

( ) ( ) 0
2
dx dyM qdx V dv M dM P dx

dx
+ + + − + + =

     If the terms of second-order are neglected, this 
equation becomes        
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dM dyV P
dx dx

= −                                                            (2.2)

 If the effects of shearing deformations and shortening of 
the beam axis are neglected the expression for the curvature 
of the axis of the beam is,

                                                                                                   (2.3)

 Where, EI represents the flexural rigidity of the beam 
in the plane of bending that is, in the XY plane, which is 
assumed to be plane of symmetry. Combining equation (2.3) 
with equation (2.1) and equation (2.2) we can express the 
differential equations of the axis of the beam in the following 
alternate forms,

dy dyEI P V
dx dx

+ = −                                                                                    (2.4)

dy dyEI P q
dx dx

+ =                                                                                        (2.5)

 Equations (2.1) to (2.5) are the basic differential equations 
for bending considering beam-column. If the axial force’s P 
equals zero, these equations reduces to the usual equations 
for bending by lateral loads only. The nature of the axial 
forces has significant effect on the deflections and ultimately 
on the secondary moments. 

III. theorotIcal formulatIon 

 Analysis of pier fixed at base and hinged at top subjected 
to axial load and uniaxial bending by using beam column 
theory for different loading conditions:

3.1 Trapezoidal Load Throughout the Height of Pier

Fig 3. Loading on pier

Lateral load intensity at general section 

‘x’ on pier xW
   

( )T

T

BW W x
W

H

 −
 = −
                    

(3.1.1.1)

3.1.1. First Order Analysis of Pier

 Let ‘ xM ’ be the bending moment at a general section 
‘XX’ at a distance ‘x’ from top of pier,

∴
  

2 3( )
2 6
T T B

x T
W x W W xM M Fx R

H
−= − − + − +         (3.1.1.2)

Using strain energy method to claculate the bending moment 
equation,

3 11
2 40 10

T B
T

M W H W HR F
H

= + + +
                                        

                                                                                                             
                                                                                                                                                      

2 33 11 ( )
2 40 10 2 6

T B T T B
x

M W H W H W x W W xM M x x
H H

−= − + + + − +                 (3.1.1.3)

3.1.2. Second Order Analysis of Pier
 Considering the same values used in first order analysis as 
given above:  
 Bending moment at a general section ‘x’ is given by

2 3

( )
2 6
T w

x A T

W x k xM Py M R F x∴ = − + − − +                              (3.1.2.1) 

y =  sin( )A xα  cos( )B xα+

3 2
2 2

1
6 2

T Tw w
T A

W Wk kxx x F R M
P P P Pα α

  − + + − + + −     
(3.1.2.2)

On substituting the values and using boundary conditions, 

At x=0, y=0 in equation 3.1.2.2 we get,

 B∴ =  2

1 T
A

W
M

P α
 

− − 
 

On substituting the values and using boundary conditions, at 

, 0x H y= = , ,x H=  0y
x

∂ =
∂  

in equation 3.1.2.2 we get,

3 2
2 2

1 1cos( )
sin( ) 6 2

Tw w T
T A

Wk kH WA H B H H F R M
H P P P P

α
α α α

    ∴ = − − − − + − −       

      
                                                                                                                                                 (3.1.2.3)

TR = 1
1 tan( )H H
P

α
α

 −  

×
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{ }

3
2 2

tan( ) tan( ) 1sin( ) tan( ) cos( )
2 2

tan( )
6

T

T

w

w w

W k HH H H HH B H H H
P P

Wk kH HF MF H
P P P P P

α αα α α
α α α

α
α α α

    − − + − +        
  + + + + − −                   

A = (D2-d2)

 I =  [(d1)
2– (d2)

2]

3.2  Trapezoidal Load at a General Height of the Pier

This analysis is done in two parts

i. For axial compressive load and lateral forces

ii. For axial compressive load and bending moment (applied 
moment) at top of pier.

3.2.1 For Axial Compressive Load and Lateral Forces

Fig 4. Axial compressive load and lateral forces

Lateral load intensity at general section ‘x’ on pier

xW = 
( )( )

( )
T B

B

W W L x
W

L l
− −

+
−

Second order analysis for axial load and trapezoidal lateral 
load by using Beam-Column Analysis:

xM = ( )1B x TPy M W R x− + −                           (3.2.1.1)

We have, 
2

2x x
yEI M

x
∂ = −
∂

 
2

12x T
xEI R Py

y
∂ = − −
∂

                                         (3.2.1.2) 
                      

(3.1.4)

On solving the above equation (3.2.1.2) for constants we get 

( ) ( ) 1cos sin TRy A x B x x
P

α α= + −                 (3.2.1.3)

( ) ( ) ( )1cos sin B
T x

M xy C x D x R W
P P

α α= + + + −     (3.2.1.4)

On substituting the values and using boundary conditions, 

At  x=0 , y=0 

in equation (3.2.1.4), we get

BMD
P

∴ = −

  0, 0yx
x

∂= =
∂

( )1
1

T xC R W
Pα

∴ = − −
        

( ) { }1
1 sin( ) 1 cos( )B

T x
x My R W x x

P P
α α

α
 ∴ = − − + − 
 

                                                       

 (3.2.1.5)
On substituting the values and using boundary conditions, 
At  x=0 , y=0 

In equation (3.2.1.3), we get

0B∴ =  
                                                   

1sin( ) TRy A x x
P

α∴ = −
                                     

(3.2.1.6)

At   x a= , 

    Deflection and slope of the column remains same on both 
side 

    Comparing equation (3.2.1.5) and (3.2.1.6)

              ∴ 1sin( ) TRA a a
P

α −

( ) { }1
1 sin( ) 1 cos( )B

T x
X MR W X X

P P
α α
α

 = − − + − 
 

    

Where, ( )X H a= −

On solving above equation we get

[ ]1 sin( )sin( ) 1 cos( )TR XA a a X H X
P

αα α
α

  ∴ − + − − −    
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   [ ] sin( )1 cos( )xW XX X X
P

αα
α

  = − − −    
                      

                     (3.2.1.7)

Now comparing slopes of equations (3.2.1.5) and (3.2.1.6)

1cos( ) TRA a
P

α α − cos( )C Xα α= sin( )D Xα α− ( )1
1

T xR W
P

+ −

On solving above equation we get

cos( )A aα α  1TR
P

−  [ ]2 cos( ) sin( )X H Xα α α− −

            
{ }cos( ) sin( ) 1X X Xα α α+ −

                                     
                                              

 
xW

P
=                                                                         (3.2.1.8)

Solving equation (3.2.1.7) and (3.2.1.8) simultaneously the 
value of ‘ 1TR ’

1TR  =  ( )

{ } ( )

sin( )1 cos( ) cos( ) sin( ) 1
tan( )

sin( )2 cos( ) sin( ) 1 cos( )
tan( )

x
XW X X X X X X

a

XX H X a X H X
a

α αα α α α
α α

α αα α α α
α α

       − − − − + −               
   − − − + − − −      

        

(3.2.1.9)
                                                                                                                                              
A = (D2-d2) 

I =  [(d1)
2– (d2)

2]

    Since, the resultant force ‘ xW ’ is varying along the column 
from 1l  to 2l . On integrating 1TR  along the length we can get 
value of reactions and substituting this value we can calculate 
other constants of integration A, C, and D respectively. And 
substituting the all values the deflections at any general point 
can be calculated

3.3.1 For Axial Compressive Load and Bending Moment

 Fig 5 Axial loading and bending moment

  
2A TM R H= −

At a general section ‘XX’ at a distance ‘x’ from top, bending 
moment is given by

2x A TM Py M R x= − +

c py y y= +

sin( ) cos( )cy A x B Xα α= +

2T A
p

R My x
P P

= − +

2sin( ) cos( ) T AR My A x B x x
P P

α α∴ = + − +        (3.2.2.1)

On substituting the values and using boundary conditions, 

At  x=0 , y=0 

In equation (3.2.2.1), 

AMB
P

∴ = −

, 0x H y= =

2sin( ) (1 cos( ))T AR MA H H H
P P

α α∴ − = − −     (3.2.2.2)

,x H=  0y
x

∂ =
∂

2cos( ) sin( )T AR MA H H
P P

α α α α∴ − = −           (3.2.2.3)

  On solving above equations (3.2.2.2) and (3.2.2.3) 
simultaneously we get

2TR  =  

( )1sin( ) 1 cos( )
tan( )

1
tan( )

AM H H
P H

H
H

α α α
α

α
α

  − −  
  

 − 
 

     (3.2.2.4)

From above equations (3.2.1.9) and (3.2.2.4)

We get total reaction ‘ TR ’ for the column.

A = (D2-d2)

 I =  [(d1)
2– (d2)

2]
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IV. parametrIc Work

 The forces on the bridge pier are calculated as specified in 
IRC and the maximum moment on a bridge pier for different 
heights is calculated. Using the combined stress equation and 
considering stresses constant the behavior for straight hollow 
circular pier & tapered hollow circular pier is calculated. The 
volume of concrete required for different height of bridge pier 
for straight hollow circular pier & tapered hollow circular 
pier is calculated. Accordingly, the percentage saving in 

Table  I  voluMe of ConCreTe requIreD for DIfferenT heIghT of  brIDge pIer for sTraIghT holloW CIrCular pIer & 
TapereD  holloW CIrCular pIer.

concrete for different height of bridge pier for tapered hollow 
circular pier with respect to straight hollow circular pier is 
calculated. The Variation of Slenderness for different height 
of pier for straight hollow pier and tapered hollow circular 
pier is calculated. For tapered hollow circular pier variation 
of slope for different height of bridge pier is calculated. Cost 
comparison for different height of bridge pier for Tapered 
hollow circular pier and straight hollow circular pier is 
calculated.Cost of pier is calculated by considering material 
cost and form work cost of bridge pier.

Fig.4.1 The variation in volume of concrete required for different height 

of bridge pier for straight hollow circular pier & tapered hollow circular pier
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 Volume of concrete required increases as the height of 
the bridge pier increases. The Rate of increase in volume of 
concrete required is milder for tapered hollow circular pier in 
comparison with straight hollow circular pier. The volume of 
concrete required for tapered hollow circular pier is varying 
largely in comparison with volume of concrete required for 
straight hollow circular pier. (Refer Table I and Graph 4.1)

Fig. 4.2 The variation in percentage saving in concrete for different height of 
bridge pier for straight hollow circular pier & tapered hollow circular pier.

 Percentage saving in concrete required for tapered hollow 
circular pier with respect to straight hollow circular pier 
increases as the height of bridge pier increases. Percentage 
saving of concrete required for Tapered hollow circular pier 
section with respect to straight hollow circular pier section 
increases and increase is nearly linear. (Refer Figure 4.2)

 Volume of concrete required increases with increase in 
slenderness ratio for hollow circular pier and tapered hollow 
circular pier. Rate of increase in volume of concrete required 
is milder for tapered hollow circular pier in comparison 
with straight hollow circular pier. The rate of increase in 
slenderness ratio for Tapered hollow circular pier is milder in 
comparison with straight hollow circular pier.(Refer Table II 
and Figure 4.3)

 As the designed base bending moment increases the slope 
of pier varies from steeper to milder. Slope of pier decreases 
as the height of bridge pier increases. Cross section of the 
piers required at the base increases as the height of bridge 
pier increases. (Refer Figure 4.4)

Table II The varIaTIon of slenDerness for DIfferenT heIghT of pIer for sTraIghT holloW pIer anD TapereD holloW CIrCular pIer. 

Fig. 4.3 The Variation of Slenderness ratio for different height of pier for straight hollow pier and tapered hollow circular pier

Second Order Analysis of Hollow Tapered Circular Bridge Pier 
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Fig.4.4 Variation of slope for different height of bridge pier for tapered hollow circular bridge pier

Fig. 4.5 Variation in cost comparison for different height of bridge pier for Tapered hollow circular pier and straight hollow circular pier

Table III CosT CoMparIson for DIfferenT heIghT of brIDge pIer for TapereD holloW CIrCular pIer anD sTraIghT holloW CIrCular pIer
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 Cost of construction of pier obviously increases as the 
height of bridge pier increases. The rate of increase in cost 
of construction for Tapered hollow circular pier is milder in 
comparison with straight hollow circular pier. (Refer Table 
III  & Figure 4.5) 

V. concluSIon

1. The Volume of concrete required obviously increases 
with increase in Height of bridge pier. 

2. The rate of increase of volume of concrete required is 
milder for Tapered hollow circular pier in comparison 
with straight Hollow circular pier.

3. The slenderness ratio is smaller for tapered hollow 
circular pier in comparison with straight hollow circular 
pier. 

4. As the height of the bridge pier increases the side slope 
of the tapered hollow circular pier decreases.

5. As the height of bridge pier increases the cost of 
construction for bridge pier increases.

6. The cost of construction of tapered hollow circular pier 
is less in comparison with straight hollow circular pier. 

7. It can be concluded that as the height of pier increases 
the straight hollow circular bridge pier proves to be 
uneconomical as compared to Tapered hollow circular 
bridge pier.  

VI. notatIonS
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