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Abstract - In both agricultural and residential buildings, 
effective water management is crucial. However, most of the 
existing literature has focused on Internet of Things (IoT)-based 
solutions for water management (e.g., turning water pumps on 
and off), but these approaches lack the ability to analyze water 
usage patterns or predict future consumption. This paper 
addresses this limitation by developing an automatic water level 
monitoring and control system using IoT and Machine Learning 
(ML) techniques. Specifically, an IoT circuit comprising various 
sensors, an ESP32 microcontroller, and related components was 
designed to collect real-time water usage data. The collected
data was then preprocessed and analyzed using ML techniques
such as Long Short-Term Memory (LSTM) networks for time-
series prediction of water flow rates and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) for anomaly
detection in sensor data (including level, flow, pH, and
turbidity). In summary, this work not only automates water
level monitoring and control through IoT but also improves
water management by applying ML techniques to predict future 
usage patterns and detect anomalies in real-time sensor data.
Keywords: Internet of Things (IoT), Water Management,
Machine Learning (ML), Long Short-Term Memory (LSTM),
Anomaly Detection

I. INTRODUCTION

Water is one of the most essential natural resources for 
sustaining life, agriculture, and industrial development. 
Rapid urbanization, population growth, and climate change 
have placed significant stress on water resources, making 
effective water management a global priority. According to 
the United Nations, nearly two-thirds of the world’s 
population may face water shortages by 2025 if current 
consumption patterns continue [1]. In both agricultural and 
residential sectors, improper utilization of water not only 
leads to wastage but also threatens long-term sustainability. 
Therefore, efficient monitoring, distribution, and prediction 
of water usage have become critical research areas in recent 
years. 

Traditional water distribution systems in residential buildings 
and agricultural fields typically rely on manual monitoring 
and control mechanisms. This often results in delayed 
responses to water shortages, tank overflows, or pump 
failures, causing inefficiency and wastage [2]. To address 
these shortcomings, Internet of Things (IoT)-based solutions 
have gained popularity. By employing sensors and 
microcontrollers, IoT systems can automatically monitor 

water levels and control pump operations [3]. These systems 
enhance convenience and reduce dependence on human 
intervention. However, most existing IoT-based water 
management frameworks are designed primarily for binary 
control tasks (i.e., turning pumps on/off) without performing 
deeper analyses of water consumption patterns. As a result, 
they fall short in enabling proactive decision-making, 
predictive management, or anomaly detection in water usage 
[4]. 

The major contributions of this paper are summarized as 
follows: 

1. Development of a robust IoT circuit for real-time water
monitoring in residential contexts using ESP32 and
multiple sensors.

2. Integration of IoT data with ML algorithms (LSTM and
DBSCAN) for predictive analytics and anomaly
detection.

3. Demonstration of an end-to-end system that not only
automates pump control but also provides insights into
water usage patterns, thereby helping prevent wastage
and ensuring sustainability.

The remainder of this paper is organized as follows. Section 
II reviews related work on IoT-based water management 
systems and their limitations. Section III presents the 
architecture and implementation details of the proposed 
system. Section IV describes the dataset and preprocessing 
techniques. Section V discusses the experimental results. 
Section VI concludes the paper and outlines possible 
directions for future research. 

II. REVIEW OF LITERATURE

Water management has been an active area of research in 
recent years, particularly with the growing adoption of 
Internet of Things (IoT) technologies. IoT-enabled systems 
have made it possible to remotely monitor water levels, 
control pump operations, and provide real-time alerts through 
low-cost sensors and wireless communication modules [5], 
[6]. Several researchers have implemented smart water 
management solutions for both residential and agricultural 
applications. 

For instance, the authors in [7] developed a microcontroller-
based automatic water pump controller using float sensors to 
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monitor overhead tank and sump levels. This system 
significantly reduced manual intervention and prevented 
overflow, but it was limited to threshold-based control 
without predictive capabilities. Similarly, the work in [8] 
proposed an IoT-based water quality and quantity monitoring 
system employing pH, turbidity, and flow sensors to ensure 
the safety of drinking water. Although it successfully 
integrated multiple parameters, the focus remained on real-
time monitoring and notifications, with no mechanism for 
analyzing long-term consumption patterns. 

In the agricultural sector, IoT has been widely applied for 
irrigation management. In [9], an automatic irrigation 
controller was designed using soil moisture sensors, Arduino 
microcontrollers, and GSM modules to optimize water usage 
in farmlands. While this system improved efficiency, it still 
relied on fixed thresholds and could not adapt to changing 
water demand patterns. Another work, [10], explored cloud-
based water management using ESP8266 microcontrollers, 
where sensor data was uploaded to a web platform for 
visualization. This system enhanced remote accessibility but 
again lacked predictive analytics. 

Across these studies, a common limitation is that IoT 
solutions primarily function as reactive systems: they detect 
tank levels, water quality, or soil moisture and then trigger a 
control action (e.g., switching the pump on/off). Such 
systems operate on predefined rules and thresholds, making 
them unable to account for future water needs or unusual 
consumption events. This limitation reduces their 
effectiveness in preventing wastage caused by pipe leaks, 
pump malfunctions, or abnormal consumption spikes. 

To address these challenges, researchers have begun 
integrating Machine Learning (ML) into water management. 
ML techniques can extract patterns from time-series data, 
enabling both prediction of future water usage and anomaly 
detection. For example, Long Short-Term Memory (LSTM) 
networks, a type of recurrent neural network, have shown 

promise in modeling temporal dependencies in water demand 
forecasting [11]. Similarly, clustering methods such as 
Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) have been successfully applied in sensor 
networks for detecting abnormal readings caused by noise, 
malfunction, or genuine anomalies [12]. 

Despite these advances, few works have combined IoT-based 
monitoring with ML-based prediction and anomaly detection 
in a unified framework. Most existing studies still treat IoT 
primarily as a data collection mechanism rather than as a 
foundation for intelligent analytics. This highlights a research 
gap in developing end-to-end systems capable of 
automatically monitoring, controlling, and learning from 
historical water usage data to improve long-term efficiency.  

Therefore, this paper positions itself at the intersection of IoT 
and ML by proposing a system that not only performs 
automatic water level monitoring and pump control but also 
applies LSTM for time-series prediction of water flow rates 
and DBSCAN for anomaly detection in sensor data, 
including level, flow, pH, and turbidity. By bridging this gap, 
the proposed framework aims to deliver a more intelligent 
and sustainable solution for residential water management. 

III. SYSTEM ARCHITECTURE AND
IMPLEMENTATION 

The proposed system combines traditional water level 
monitoring techniques with IoT connectivity and real-time 
control to optimize water usage, prevent overflow, and 
maintain water quality. 

A. System Architecture

The overall architecture of the proposed system is illustrated 
in Fig. 1. In this design, the ESP32 microcontroller serves as 
the central hub, interfacing with multiple sensors and 
actuators. 

Fig. 1 Proposed System Block Diagram 
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The key components of the system are listed and described 
as follows: 

1. Water Level Sensors (Float and Ultrasonic): Deployed
in both the overhead and underground tanks to monitor
water levels. The float sensor provides discrete threshold
detection (high/low), whereas the ultrasonic sensor
enables continuous water-level measurements.

2. Relay Module: Controls the water pump by receiving
trigger signals from the ESP32.

3. Motor (Submersible Pump): Transfers water from the
underground reservoir to the overhead tank.

4. pH and Turbidity Sensors: Monitor water quality. The
pH sensor measures acidity/alkalinity, while the
turbidity sensor assesses clarity to detect contamination.

5. Power Supply Unit (5V/2A and 230V/50Hz AC):
Provides regulated power to the ESP32, sensors, and
motor control unit.

6. Enclosure and Miscellaneous Components: Protect
electronic circuits and support modular connections.

B. Implementation

The prototype implementation of the proposed system is 
shown in Fig. 2. The experimental setup consists of 
transparent water tanks for visibility, an ESP32 development 
board, sensors (float, pH, turbidity, and ultrasonic), a relay 
module, and a submersible pump. All components are 
mounted on a stable base with appropriate wiring to ensure 
reliable connectivity. 

Fig. 2 Prototype implementation of the proposed system 

The working of the proposed system is illustrated in Fig. 3. 
When the water level in the overhead tank is detected as low, 
the ESP32 checks the underground reservoir. If sufficient 
water is available, the ESP32 triggers the relay module to 
activate the motor.  

The motor continues pumping until the overhead tank 
reaches its maximum level, at which point the ESP32 sends 
a signal to turn off the pump. During this process, the pH and 
turbidity sensors continuously monitor water quality. 

Fig. 3 Working of the Proposed System 

39 TARCE Vol.14 No.1 January-June 2025

Enhancing Water Management in Buildings Through IoT-Based Monitoring and Machine Learning Powered Analytics 



Further, this modular and IoT-enabled implementation 
ensures that the system is scalable, user-friendly, and capable 
of deployment in real residential environments. 

IV. DATASET AND PRE-PROCESSING

The dataset collected from the proposed system captures 
multiple attributes over the period from January 2025 to 
March 2025. Each record corresponds to a timestamp along 
with the operational states of the sump and overhead tanks, 
water quality indicators, and water flow readings. More 
specifically, the following attributes were recorded: 

a. timestamp: Date and time of data collection (dd-mm-
yyyy hh:mm format).

b. sump_status: Binary variable indicating the sump pump
state (1 = active, 0 = inactive).

c. tank_status: Binary variable indicating the motor state of 
the overhead tank (1 = ON, 0 = OFF).

d. sumpstatus: Categorical label derived from sump state
(e.g., tank full, half, empty).

e. tank_message: System-generated status messages about
tank water levels.

f. waterflow_rate (L/hr): Flow sensor reading in liters per
hour, representing consumption or filling rate.

g. pH_value: Real-time pH level of stored water, essential
for monitoring water safety (WHO standard: 6.5-8.5).

h. turbidity_NT: Water clarity measured in Nephelometric
Turbidity Units (NTU), indicating purity.

i. tank_level: Categorical representation of water level
percentage (e.g., < 25%, 25-50%, 50-75%, > 75%).

Before applying machine learning models, the raw dataset 
was preprocessed. Missing values were filled with zero to 
avoid bias. Categorical data (e.g., tank full, half, empty and 
tank level ranges) were mapped into numerical values, such 
as tank full = 3, tank half = 2, tank empty = 1. In addition, 
correlation analysis was performed across different sensor 
variables, as shown in Fig. 4.  

The correlation heat map demonstrates the relationships 
among features such as sump status, tank level, water flow 
rate, pH, and turbidity. For example, water flow rate 
exhibited weak correlations with chemical quality parameters 
(pH and turbidity), indicating that water quantity and quality 
are largely independent in the dataset. Such analysis is crucial 
for identifying redundant or weakly related variables prior to 
building predictive models. 

Fig. 4 Correlation analysis 

V. RESULTS AND DISCUSSION

To forecast water usage patterns, an LSTM model was 
employed in this study. As illustrated in Fig. 5, the model was 
trained on historical water flow data and tested on unseen 
time steps. The blue line represents the actual water flow 
(liters per hour), while the orange dashed line denotes the 
predicted flow. The model successfully captured the overall 

trend of fluctuations, although some peaks and troughs were 
under- or over-estimated. This ability to forecast short-term 
water demand is particularly valuable in residential settings, 
where efficient pump scheduling can reduce both energy 
consumption and water wastage. The results confirm that 
LSTM, being a sequence-based model, is effective for 
modeling time-dependent water usage behavior-an outcome 
that traditional IoT-only control systems cannot achieve. 
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Fig. 5 Water Flow rate prediction using LSTM 

For anomaly detection, DBSCAN was applied on multi-
sensor data after dimensionality reduction using Principal 
Component Analysis (PCA). The clustering results 
are shown in Fig. 6. Different clusters (colored 
points) represent typical operating behaviors of the 
system, while points labeled as -1 indicate outliers or 
anomalies. These 

anomalies could correspond to sensor malfunctions (e.g., 
sudden drop in pH sensor readings) or unusual events (e.g., 
excessive water consumption or unexpected pump 
operation). By identifying these outliers in real-time, the 
system can issue alerts or trigger corrective actions, ensuring 
robust and reliable water management. 

Fig. 6 Clustering of Sensor Behavior 

In summary, LSTM contributes by predicting future water 
consumption, thereby enabling proactive pump control and 
reservoir scheduling. DBSCAN provides the capability to 
detect anomalies in real time, enhancing fault tolerance and 
system reliability. Together, these methods extend IoT-based 
automation into intelligent water management, addressing 
both efficiency and resilience. 

VI. CONCLUSION

This work presented an intelligent water management 
framework that integrates IoT-based sensing with advanced 

machine learning techniques. Correlation analysis revealed 
the relationships among key water quality and quantity 
parameters, providing a foundation for further modeling. The 
LSTM model effectively captured temporal dependencies in 
water flow, enabling short-term demand forecasting and 
more efficient pump scheduling. DBSCAN clustering 
accurately identified abnormal sensor behaviors, ensuring 
reliability and real-time fault detection. Together, these 
approaches advance water management beyond traditional 
monitoring toward predictive and adaptive control. Future 
work will focus on large-scale deployment and optimization 
of these models for diverse water distribution environments. 
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