Corrosion Resistance of Steel Rebar in Simulated Concrete Pore Solution in Presence of Trisodium Phosphate and Zn2+

Authors

  • S. Devi Meenakshi Department of Chemistry & Physics, Nadar Saraswathi College of Arts & Science, Theni, Tamil Nadu, India
  • Susai Rajendran Research Centre, St. Antony’s College of Arts & Science, Thamaraipadi, Dindigul, Tamil Nadu, India
  • G. Divya Department of Chemistry & Physics, Nadar Saraswathi College of Arts & Science, Theni, Tamil Nadu, India
  • S. Anusuya Department of Chemistry & Physics, Nadar Saraswathi College of Arts & Science, Theni, Tamil Nadu, India

DOI:

https://doi.org/10.51983/tarce-2016.5.2.2230

Keywords:

Rebar Steel, Corrosion Inhibition, Trisodium Phosphate, Well Water, Synergistic Effect, Simulated Concrete Pore Solution

Abstract

The inhibitive performance of Trisodium Phosphate (TSP) in controlling corrosion of rebar steel immersed in simulated concrete pore solution prepared in well water in the absence and presence of Zn2+ has been evaluated by the weight loss method. The formulation consisting of 250 ppm of TSP and 50 ppm of Zn2+ offers 95 % inhibition efficiency to rebar steel. Potentiodynamic polarization and electrochemical impedance studies confirmed that a TSP -Zn2+ system function as an anodic inhibitor and the formulation controls the anodic reaction predominantly. Surface analysis by CV, SEM and AFM confirmed the formation of protective layer on the rebar steel surface.

References

G. Trabanelli, Corrosion, 47 , pp.410-419, 1991.

N. S. Berke and T. G. Weil, Advances in Concrete Technology,editor V.M. Malhotra. CANMET,Canada, 899 (1992).

M.Manivannan, S.Rajendran, and A. Suriya Prabha, Eur. Chem Bull 2012 I (8) 317-29; M. Pandiarajan, J.Sathiyabama, J.Lydia Christy,J.Jeyasundari, P.Prabhakar., Eur. Chem Bull 2013,Vol. 2,No. 1,pp.1-8;

M.Abdallah, I. Assfarany, A.S. Fouda., J.Mater.Eng.Perform., 2012,21(6) 995; Y.Feng, X.Qi, H.L.Jian, R.C. Sun, J.X. Jiang, BioResources., 2012, Vol. 7, No.3, 3755.

R.V. Kashkovskiy, Y.Kuznetsov, L.P. Kazansky, Corros. Sci,2012,64,126.

S.M.A Hosseini, M. Salari, E. Jamalizadeh, A.H.Jafari, , Corros.Sci, 2012,Vol. 68, No. 7,6004,126.

J. Michael, Franklin, C. David, S. Hugh White., Isaacs, , Corros.Sci, 1992,Vol.33, No.2, 251.

Suman lata and R.S.Chaudhary, Indian J. Chem. Technol.,2008,15,364.

Nakayama N., Obuchi A, Corros. Sci 2003, 45, 2075.

S. Rajendran, B. V. Apparao, and N. Palaniswamy, “CorrosionInhibition by Phosphonic Acid -Zn2+ Systems for Mild Steel inChloride Medium”, Anti-Corrosion Methods and Materials, 47(2000), pp. 359.

C.Mary Anbarasi, SusaiRajendran ., J. Electrochem. Sci. Eng., (2011), Vol. 2,No.1, p,p. 1.

M. Pandiarajan, P. Praphakar, S. Rajendran, Eur. Chem. Bull., (2012), Vol. 1,No.7, pp. 238.

N. Manimaran, S. Rajendran, M. Manivannan, S. Johnmary, Res. J.Chem.,Sci., (2012), Vo.l. 2, No.), pp. 52.

J. Arockia Selvi, ,SusaiRajendran and A. John Amalraj, B.Narayanasamy, Port. Electrochim. Acta., (2009), Vol .27,No.1,pp.1.

S. Agila Devi, SusaiRajendran, J. Jeyasundari, M. Pandiarajan, Eur. Chem. Bull., (2013),Vol. 2, No.2, pp. 84.

R.Hariharaputhran, A. Subramanian, A.A. Alice etal, Influence ofnitrones on corrosion inhibition and Hydrogen permeation throughmild steel in acidic solutions. Antocorros Met Mater 1999,46:pp.35-39.

S. Rajendran, R.M.Joany, B.V. Apparaoetal, Role of Zn 2+ in theinhibition of corrosion of mild steel by 1-hydroxy ethane, 1,1-diphosphonic acid. Indian JChem Technol2002;9:pp.197-200.

E.Kalman, B.Varheyi, I Felhosi, 1-hydroxy ethane, 1,1-diphosphonic acid. An electrochemical impedance spectroscopystudies, J ElectrochemSoc 1994: 14: pp.3357-60.

A.Bonnel, F.Dabosi, C.Deslovis, Corrosion study of carbon steel inneutral chloride solutions by impedance techniques. J ElectrochemSoc,1983;130:pp. 753-61.

Downloads

Published

05-11-2016

How to Cite

Meenakshi, S. D. ., Rajendran, S., Divya, G., & Anusuya, S. (2016). Corrosion Resistance of Steel Rebar in Simulated Concrete Pore Solution in Presence of Trisodium Phosphate and Zn2+. The Asian Review of Civil Engineering, 5(2), 13–18. https://doi.org/10.51983/tarce-2016.5.2.2230